快好知 kuaihz订阅看过栏目

 

带电颗粒在电场作用下,向着与其电性相反的电极移动,称为电泳(electrophoresis,EP)。利用带电粒子在电场中移动速度不同而达到分离的技术称为电泳技术。1937年瑞典学者A.W.K.蒂塞利乌斯设计制造了移动界面电泳仪,分离了马血清白蛋白的3种球蛋白,创建了电泳技术。在确定的条件下,带电粒子在单位电场强度作用下,单位时间内移动的距离(即迁移率)为常数,是该带电粒子的物化特征性常数。不同带电粒子因所带电荷不同,或虽所带电荷相同但荷质比不同,在同一电场中电泳,经一定时间后,由于移动距离不同而相互分离。分开的距离与外加电场的电压与电泳时间成正比。陶瓷工业中用的粘土,往往带有氧化铁,要除去氧化铁,可以把粘土和水一起搅拌成悬浮液,由于粘土粒子带负电荷,氧化铁粒子带正电荷,通电后在阳极附近会聚集出很纯净的粘土。工厂除尘也用到电泳。

电泳现象

在确定的条件下,带电粒子在单位电场强度作用下,单位时间内移动的距离(即迁移率)为常数,是该带电粒子的物化特征性常数

。不同带电粒子因所带电荷不同,或虽所带电荷相同但荷质比不同,在同一电场中电泳,经一定时间后,由于移动距离不同而相互分离。分开的距离与外加电场的电压与电泳时间成正比。

在外加直流电源的作用下,胶体微粒在分散介质里向阴极或阳极作定向移动,这种现象叫做电泳。利用电泳现象使物质分离,这种技术也叫做电泳。胶体有电泳现象,证明胶体的微粒带有电荷。各种胶体微粒的本质不同,它们吸附的离子不同,所以带有不同的电荷。

电荷移动规律

利用电泳可以确定胶体微粒的电性质,向阳极移动的胶粒带负电荷,向阴极移动的胶粒带正电荷

一般来讲,金属氢氧化物、金属氧化物等胶体微粒吸附阳离子,带正电荷;非金属氧化物、非金属硫化物等胶体微粒吸附阴离子,带负电荷。

因此,在电泳实验中,氢氧化铁胶体微粒向阴极移动,三硫化二砷胶体微粒向阳极移动。利用电泳可以分离带不同电荷的溶胶。

例如,陶瓷工业中用的粘土,往往带有氧化铁,要除去氧化铁,可以把粘土和水一起搅拌成悬浮液,由于粘土粒子带负电荷,氧化铁粒子带正电荷,通电后在阳极附近会聚集出很纯净的粘土。工厂除尘也用到电泳。利用电泳还可以检出被分离物,在生化和临床诊断方面发挥重要作用。本世纪40年代末到50年代初相继发展利用支持物进行的电泳,如滤纸电泳,醋酸纤维素膜电泳、琼脂电泳;50年代末又出现淀粉凝胶电泳和聚丙烯酰胺凝胶电泳等。

应用领域

电泳已日益广泛地应用于分析化学、生物化学、临床化学、毒剂学、药理学、免疫学、微生物学、食品化学等各个领域。在直流电场中,带电粒子向带符号相反的电极移动的现象称为电泳(electropho-resis)。1807年,由俄国莫斯科大学的斐迪南·弗雷德里克·罗伊斯(Ferdinand Frederic Reuss)首先发现了电泳现象,但直到1937年瑞典的Tiselius建立了分离蛋白质的界面电泳(boundary electrophoresis)之后,电泳技术才开始应用。上世纪60-70年代,当滤纸、聚丙烯酰胺凝胶等介质相继引入电泳以来,电泳技术得以迅速发展。丰富多彩的电泳形式使其应用十分广泛。电泳技术除了用于小分子物质的分离分析外,最主要用于蛋白质、核酸、酶,甚至病毒与细胞的研究。由于某些电泳法设备简单,操作方便,具有高分辨率及选择性特点,已成为医学检验中常用的技术。

电泳又名—— 电着(着),泳漆,电沉积。创始于二十世纪六十年代,由福特汽车公司最先应用于汽车底漆。由于其出色的防腐、防锈功能,很快在军工行业得到广泛应用。近几年才应用到日用五金的表面处理。由于其优良的素质和高度环保,正在逐步替代传统油漆喷涂。

电泳漆膜

电泳漆膜具有涂层丰满、均匀、平整、光滑的优点,电泳漆膜的硬度、附着力、

耐腐、冲击性能、渗透性能明显优于其它涂装工艺。

详细特点:

(1)采用水溶性涂料,以水为溶解介质,节省了大量有机溶剂,大大降低了大气污染和环境危害,安全卫生,同时避免了火灾的隐患;

(2)涂装效率高,涂料损失小,涂料的利用率可达90%~95%;

(3)涂膜厚度均匀,附着力强,涂装质量好,工件各个部位如内层、凹陷、焊缝等处都能获得均匀、平滑的漆膜,解决了其他涂装方法对复 杂形状工件的涂装难题;

(4)生产效率高,施工可实现自动化连续生产,大大提高劳动效率;

(5)设备复杂,投资费用高,耗电量大,其烘干固化要求的温度较高,涂料、涂装的管理复杂,施工条件严格,并需进行废水处理;

(6)只能采用水溶性涂料,在涂装过程中不能改变颜色,涂料贮存过久稳定性不易控制。

(7)电泳涂装设备复杂,科技含量较高,适用于颜色固定的生产。

电泳种类

移动界面电泳

是将被分离的离子(如阴离子)

混合物置于电泳槽的一端(如负极),在电泳开始前,样品与载体电解质有清晰的界面。电泳开始后,带电粒子向另一极(正极)移动,泳动速度最快的离子走在最前面,其他离子依电极速度快慢顺序排列,形成不同的区带。只有第一个区带的界面是清晰的,达到完全分离,其中含有电泳速度最快的离子,其他大部分区带重叠。

区带电泳

是在一定的支持物上,于均一的载体电解质中,将样品加在中部位置,在电场作用下,样品中带正或负电荷的离子分别向负或正极以不同速度移动,分离成一个个彼此隔开的区带。区带电泳按支持物的物理性状不同,又可分为纸和其他纤维膜电泳、粉末电泳、凝胶电泳与丝线电泳。

等电聚焦电泳

是将两性电解质加入盛有pH梯度缓冲液的电泳槽中,当其处在低于其本身等电点的环境中则带正电荷,向负极移动;若其处在高于其本身等电点的环境中,则带负电向正极移动。当泳动到其自身特有的等电点时,其净电荷为零,泳动速度下降到零,具有不同等电点的物质最后聚焦在各自等电点位置,形成一个个清晰的区带,分辨率极高。

等速电泳

是在样品中加有领先离子(其迁移率比所有被分离离子的大)和终末离子(其迁移率比所有被分离离子的小),样品加在领先离子和终末离子之间,在外电场作用下,各离子进行移动,经过一段时间电泳后,达到完全分离。被分离的各离子的区带按迁移率大小依序排列在领先离子与终末离子的区带之间。由于没有加入适当的支持电解质来载带电流,所得到的区带是相互连接的(图d),且因“自身校正”效应,界面是清晰的,这是与区带电泳不同之处。

电泳分离原理示意图 a 移动界面电泳b 区带电泳 c 等电聚焦电泳 d 等速电泳L 领先离子T 终末离子。

电泳原理

综述

电泳是电泳涂料在阴阳两极,施加于电压作用下,带电荷的涂料离子移动到阴极,并与阴极表面所产生的碱性物质作用形成不溶解物,沉积于工件表面。它包括四个过程:

电解

(分解)在阴极反应最初为电解反应,生成氢气及氢氧根离子OH ,此反应造成阴极面形成一高碱性边界层,当阳离子与氢氧根作用成为不溶于水的物质,涂膜沉积,方程式为:H2O→OH+H。

电泳动

泳动、迁移)阳离子树脂及H+ 在电场作用下,向阴极移动,而阴离子向阳极移动过程。

电沉积

(析出)在被涂工件表面,阳离子树脂与阴极表面碱性作用,中和而析出不沉积物,沉积于被涂工件上。

电渗

(脱水)涂料固体与工件表面上的涂膜为半透明性的,具有多数毛细孔,水被从阴极涂膜中排渗出来,在电场作用下,引起涂膜脱水,而涂膜则吸附于工件表面,而完成整个电泳过程。

基本原理

生物大分子如蛋白质,核酸,多糖等大多都有阳离子和阴离子基团,称为两性离子。常以颗粒分散在溶液中,它们的静电荷取决于介质的H+浓度或与其他大分子的相互作用。在电场中,带电颗粒向阴极或阳极迁移,迁移的方向取决于它们带电的符号,这种迁移现象即所谓电泳。

如果把生物大分子的胶体溶液放在一个没有干扰的电场中,使颗粒具有恒定迁移速率的驱动力来自于颗粒上的有效电荷Q和电位梯度E。它们与介质的摩擦阻力f抗衡。在自由溶液中这种抗衡服从Stokes定律。

F=6πrvη

这里v是在介质粘度为η中半径为r的颗粒的移动速度。但在凝胶中,这种抗衡并不完全符合Stokes定律。F取决于介质中的其他因子,如凝胶厚度,颗粒大小,甚至介质的内渗等。

电泳迁移率(mbility)m规定为在电位梯度E的影响下,颗粒在时间t中的迁移距离d。

d

m= ------------ 或 m=V / E

t·E

迁移率的不同提供了从混合物中分离物质的基础,迁移距离正比于迁移率。

影响因素

1.电泳介质的pH值

溶液的pH值决定带电物质的解离程度,也决定物质所带净电荷的多少.对蛋白质,氨基酸等类似两性电解质,pH值离等电点越远,粒子所带电荷越多,泳动速度越快,反之越慢。因此,当分离某一种混合物时,应选择一种能扩大各种蛋白质所带电荷量差别的pH值,以利于各种蛋白质的有效分离.为了保证电泳过程中溶液的pH值恒定,必须采用缓冲溶液。

缓冲液的离子强度

溶液的离子强度(Ion intensity)是指溶液中各离子的摩尔浓度与离子价数平方的积的总和的1/2.带电颗粒的迁移率与离子强度的平方根成反比。低离子强度时,迁移率快,但离子强度过低,缓冲液的缓冲容量小,不易维持pH恒定.高离子强度时,迁移率慢,但电泳谱带要比低离子强度时细窄。通常溶液的离子强度在0.02~0.2之间。

I=1/2∑CiZi2 (I:离子强度;Ci:离子的摩尔浓度;Zi:离子价数. )

0.154M NaCl溶液的离子强度为:

I= 1/2(0.154×12+0.154×12)=0.154

0.015M Na2SO4溶液的离子强度为:

I= 1/2(0.015×2×12+0.015×22)=0.045

3.电场强度

电场强度(电势梯度Electric field intensity)是指每厘米的电位降(电位差或电位梯度).电场强度对电泳速度起着正比作用,电场强度越高,带电颗粒移动速度越快。根据实验的需要,电泳可分为两种:一种是高压电泳,所用电压在500~1000V或更高.由于电压高,电泳时间短(有的样品需数分钟),适用于低分子化合物的分离,如氨基酸,无机离子,包括部分聚焦电泳分离及序列电泳的分离等。因电压高,产热量大,必须装有冷却装置,否则热量可引起蛋白质等物质的变性而不能分离,还因发热引起缓冲液中水分蒸发过多,使支持物(滤纸,薄膜或凝胶等)上离子强度增加,以及引起虹吸现象(电泳槽内液被吸到支持物上)等,都会影响物质的分离.另一种为常压电泳,产热量小,室温在10~25℃分离蛋白质标本是不被破坏的,无需冷却装置,一般分离时间长。

4.电渗现象

在电场中液体对于一个固体的固定相相对移动称为电渗.在有载体的电泳中,影响电泳移动的一个重要因素是电渗。最常遇到的情况是γ-球蛋白,由原点向负极移动,这就是电渗作用所引起的倒移现象.产生电渗现象的原因是载体中常含有可电离的基团,如滤纸中含有羟基而带负电荷,与滤纸相接触的水溶液带正电荷,液体便向负极移动。由于电渗现象往往与电泳同时存在,所以带电粒子的移动距离也受电渗影响;如电泳方向与电渗相反,则实际电泳的距离等于电泳距离加上电渗的距离.琼脂中含有琼脂果胶,,其中含有较多的硫酸根,所以在琼脂电泳时电渗现象很明显,许多球蛋白均向负极移动。除去了琼脂果胶后的琼脂糖用作凝胶电泳时,电渗大为减弱.电渗所造成的移动距离可用不带电的有色染料或有色葡聚糖点在支持物的中心,以观察电渗的方向和距离。

结果检测

对于不同的目的,应采用不同的检测方法。用染料和生物大分子结合形成有色的复合物是电泳后检测最常用的方法.

(七)聚丙烯酰胺凝胶电泳结果不正常现象和对策

1.指示剂前沿呈现两边向上或向下的现象。向上的“微笑”现象说明凝胶的不均匀冷却,中间部分冷却不好,所以导致凝胶中分子有不同的迁移率所致。这种情况在用较厚的凝胶以及垂直电泳中时常发生。向下的“皱眉”现象常常是由于垂直电泳时电泳槽的装置不合适引起的,特别是当凝胶和玻璃板组成的“三明治”底部有气泡或靠近隔片的凝胶聚合不完全便会产生这种现象。

2.“拖尾”现象是电泳中最常见的现象。这常常是由于样品溶解不佳引起的,克服的办法是在加样前离心,选用合适的样品缓冲液和凝胶缓冲液,加增溶辅助试剂。另一方法是降低凝胶浓度。

3.“纹理”现象常常是由于样品中不溶颗粒引起的,克服办法是增加溶解度和离心除去不溶性颗粒。

4.蛋白带偏斜常常是由于滤纸条或电极放置不平行所引起的,或由于加样位置偏斜而引起。

5.蛋白带过宽,与邻近蛋白泳道的蛋白带相连,这是由于加样量太多或加样孔泄漏引起的。

6.蛋白带模糊不清和分辨不佳是由于多种原因引起的。虽然梯度凝胶可以提高分辨率,但与其他方法相比,常规聚丙烯酰胺凝胶电泳是分辨率较低的方法。为了提高分辨率,不要加过多的样品,小体积样品可给出窄带。加样后应立即电泳,以防止扩散。选择合适的凝胶浓度,使组分得以充分的分离。通常靠近前沿的蛋白带分辨率不佳,所以应根据分子量与凝胶孔径的关系,灌制足够长度的凝胶,以使样品不会走出前沿。样品的蛋白水解作用也引起扩散而使分辨率降低。水解作用通常发生在样品准备的时候,系统中的内源性蛋白酶会水解样品蛋白,如果在缓冲液中加蛋白酶抑制剂可以减少这种情况的发生。

投稿
非常不爽,删了吧! 相关词条:科学 学科 定理定律 移动