快好知 kuaihz订阅看过栏目

 

通过对添加的核燃料发生裂变或聚变获得大量能源的装置。

反应堆-详细介绍

(核)反应堆 (nuclear) reactor 能维持可控自持链式核裂变反应的装置。

指任何含有其核燃料按此种方式布置的结构,使得在无需补加中子源的条件下能在其中发生自持链式核裂变过程。注释:更广泛的意义上讲,反应堆这一术语应覆盖裂变堆、聚变堆、裂变聚变混合堆,但一般情况下仅指裂变堆。核反应堆,又称为原子反应堆或反应堆,是装配了核燃料以实现大规模可控制裂变链式反应的装置。

在原子能的和平利用中,最典型的当数原子能发电,也称核电。如果说原子弹的爆炸是瞬间、不受控制地进行的铀-235或钚-239核裂变链锁反应的结果,那么原子能发电站利用的能量是来受控状态下持久进行的铀-235或钚-239核裂变链锁反应。一种可以人为控制核裂变反应快慢并能维持链锁核裂变反应的装置叫做反应堆。费米发明的反应堆是用来生产钚-239的,这种反应堆叫做生产堆。原子能发电站的核心也是反应堆,它是用反应堆内核裂变反应产生的巨大热量生成饱和蒸汽驱动气轮机发电,这种反应堆叫做动力堆。原子能发电与用煤、用油发电的区别仅在于产生热量的装置不同,前者是原子能反应堆,后者是燃煤、燃油锅炉。

反应堆的类型很多,但它主要由活性区,反射层,外压力壳和屏蔽层组成。活性区又由核燃料,慢化剂,冷却剂和控制棒等组成。现在用于原子能发电站的反应堆中,压水堆是最具竞争力的堆型(约占61%),沸水堆占一定比例(约占24%),重水堆用的较少(约占5%)。压水堆的主要特点是:1)用价格低廉、到处可以得到的普通水作慢化剂和冷却剂,2)为了使反应堆内温度很高的冷却水保持液态,反应堆在高压力(水压约为15.5 MPa )下运行,所以叫压水堆;3)由于反应堆内的水处于液态,驱动汽轮发电机组的蒸汽必须在反应堆以外产生;这是借助于蒸汽发生器实现的,来自反应堆的冷却水即一回路水流入蒸汽发生器传热管的一侧,将热量传给传热管另一侧的二回路水,使后者转变为蒸汽(二回路蒸汽压力为6—7 MPa,蒸汽的温度为275—290 ℃);4)由于用普通水作慢化剂和冷却剂,热中子吸收截面较大,因此不可能用天然铀作核燃料,必须使用浓缩铀(铀-235的含量为2—4%)作核燃料。沸水堆和压水堆同属于轻水堆,它和压水堆一样,也用普通水作慢化剂和冷却剂,不同的是在沸水堆内产生蒸汽(压力约为7 MPa),并直接进入气轮机发电,无需蒸汽发生器,也没有一回路与二回路之分,系统特别简单,工作压力比压水堆低。然而,沸水堆的蒸汽带有放射性,需采取屏蔽措施以防止放射性泄漏。重水堆是用重水作慢化剂和冷却剂,因为其热中子吸收截面远小于普通水的热中子吸收截面,所以可以用天然铀作为重水堆的核燃料。所谓热中子,是指铀-235原子核裂变时射出的快中子经慢化后速度降为2200 m/s、能量约为1/40 eV的中子。热中子引起铀-235核裂变的可能性,比被铀-238原子核俘获的可能性大190倍。这样,在以天然铀为燃料的重水堆中,核裂变链锁反应可持续进行下去。由于重水慢化中子不如普通水有效,因此重水堆的堆芯比轻水堆大得多,使得压力容器制造变得困难。重水堆仍需配备蒸汽发生器,一回路的重水将热量带到蒸汽发生器,传给二回路的普通水以产生蒸汽。重水堆的最大优点是不用浓缩铀而用天然铀作核燃料,但是阻碍其发展的重要原因之一是重水很难得到,因为在天然水中重水只占1/6500。

反应堆-简史

前苏联于1954年建成了世界上第一座原子能发电站,掀开了人类和平利用原子能的新的一页。英国和美国分别于1956年和1959年建成原子能发电站。到2004.9.28,在世界上31个国家和地区,有439座发电用原子能反应堆在运行,总容量为364.6百万千瓦,约占世界发电总容量的16%。其中,法国建成59座发电用原子能反应堆,原子能发电量占其整个发电量的78%;日本建成54座,原子能发电量占其整个发电量的25%;美国建成104座,原子能发电量占其整个发电量的20%;俄罗斯建成29座,原子能发电量占其整个发电量的15%。我国于1991年建成第一座原子能发电站,包括这一座在内,现在投入运行的有9座发电用原子能反应堆,总容量为660万千瓦。我国另有2座反应堆在建设中。我国还为巴基斯坦建成一座原子能发电站。

反应堆-构成

反应堆由核燃料、慢化剂、冷却剂、控制棒及热交换回路等构成。

核燃料和慢化剂

核裂变时放出的中子,其能量高达2兆电子伏的,叫做快中子,它通过与周围核碰撞而慢化。引入重水、普通(轻)水、石墨、铍、有机物等轻物质能使慢化过程效率提高,这类轻物质叫做慢化剂。为了减少中子损失,慢化剂的中子吸收截面必须很低。中子慢化到与环境温度平衡时叫做热中子,热中子引起核裂变的几率大大增加,因此大多数反应堆都用慢化剂把中子慢化成热中子,这种反应堆叫做热中子反应堆。轻水和重水都是优良的慢化剂,但重水的中子吸收截面只有轻水的1/500。

随着核燃料中易裂变物质的浓度和量的增加,高能量的中子也能维持裂变链式反应。不用慢化剂的反应堆叫做快中子反应堆。

只有铀 233、铀235和钚239三种易裂变核素可用作核燃料。金属铀易发生辐射损伤,在反应堆中使用寿命较短,只能做低燃耗的元件,做成铀锆或铀钼合金可使核燃料的耐辐照性能得到改善。氧化铀的耐辐照性能好,高温下稳定,已获得广泛的应用,缺点是导热性较差。其他陶瓷材料如碳化铀等是正在发展中的新型核燃料元件材料。钚239是铀238俘获中子后的产物,用钚239做反应堆燃料尚处于初始阶段,目前主要是和铀 238一起使用,常见的形式是混合氧化物PuO2 UO2。和钚239一样,铀233在自然界不存在,它由钍232俘获中子生成。由于铀233的核性质优良及自然界钍资源丰富,人们对用铀233作核燃料颇感兴趣,但这种钍-铀核燃料循环尚处于研究阶段。

一定化学形态的核燃料在反应堆中使用时,在大多数情况下要做成具有确定物理性质和外形的燃料芯块,封装在金属包壳中,构成燃料元件棒,常见的是细长圆柱体,如压水动力反应堆的元件棒直径约1厘米,长约3.8米。元件棒组装成棚格形式的元件组件,按一定的布置构成反应堆的堆芯。慢化剂布置在元件棒之间。在这种情况下,燃料(有时还有慢化剂)和冷却剂分别处于不同的相中,它们的配置是不均匀的,这种反应堆叫做非均匀反应堆。燃料与冷却剂或与冷却剂和慢化剂混成一个流体均匀配置的反应堆,叫做均匀反应堆。

冷却剂 核裂变放出的能量主要被裂变碎片以动能形式带出,通过碎片的碰撞减速,以热能释放。其他辐射能也转变成热能。流经堆芯的冷却剂把热带出并通过 热交换器传给另一传热介质后再循环回堆芯,构成反应堆的热交换回路。冷却剂必须是中子吸收截面低的物质,并具有良好的传热和流动性。

水是良好的冷却剂,在第一座生产反应堆中就已使用,至今仍是大多数动力反应堆采用的冷却剂。以水为冷却剂的反应堆称水反应堆。用水作冷却剂的严重限制是它的蒸气压高。在动力堆中,可将压力保持在约150大气压,这样,300℃时水仍不沸腾,这种反应堆叫做压水堆;另一种反应堆内压力保持在70大气压,因而水沸腾成蒸汽,这种反应堆叫做沸水堆。在这两种堆中水既是冷却剂又是慢化剂。

与液体相比,气体由于密度低而传热性较差,但可通过增加压力加以改善,以气体为冷却剂的反应堆称气冷反应堆或气冷堆。氦气是最常用的气体冷却剂,它化学上是惰性的,热力学性质和核性质都好,已在高温气冷堆中使用。二氧化碳则在某些温度较低的气冷堆中使用。

液态金属,特别是液态碱金属有极好的传热性,而且在动力堆运行温度下蒸气压很低。其中钠是最常用的冷却剂,因为它的熔点较低(97.81℃),容易获得,它的核性质对于快中子反应堆特别合适,但它的化学性质活泼,遇水时反应剧烈,在使用中必须特别注意。

熔盐(如混合氟盐)和有机物(如三联苯)等都曾考虑用作反应堆的冷却剂。

结构材料和包壳材料  反应堆的堆芯(有时包括慢化剂)放在装有冷却剂的反应堆容器中。在高压反应堆中,这个容器是一个厚壁的压力壳。容器外围是屏蔽层、其他部件和安全壳。

反应堆系统用的结构材料必须有合适的核性质和物理性质,并且与冷却剂在运行条件下相容。常用的结构材料有铝、不锈钢和锆合金,铝广泛用于低温反应堆而锆合金及不锈钢广泛用于高温反应堆。厚壁压力容器一般用碳钢制造,内壁衬有不锈钢以符合抗腐蚀的要求。

包壳用来隔开核燃料和冷却剂,以避免它们间的化学作用和防止放射性物质的外泄。包壳材料必须同时与燃料和冷却剂相容,并具有良好的核性质,其中最主要的是中子吸收截面要小。铝和锆合金分别是低温水堆和高温水堆的核燃料包壳材料,不锈钢则用作快中子反应堆的核燃料包壳材料。

控制棒  反应堆靠提出或插入控制棒来控制链式反应的速率。控制棒由高中子吸收截面的材料(镉、硼、铟、钆等)制成,由自动控制系统对其位置实现精密的调节。把控制棒由堆芯提出时,堆芯反应性增高;相反则反应性降低;全部插入时可使链式反应完全停止。

反应堆-工作原理

核反应堆是核电站的心脏,它的工作原理是这样的:

原子由原子核与核外电子组成。原子核由质子与中子组成。当铀235的原子核受到外来中子轰击时,一个原子核会吸收一个中子分裂成两个质量较小的原子核,同时放出2—3个中子。这裂变产生的中子又去轰击另外的铀235原子核,引起新的裂变。如此持续进行就是裂变的链式反应。链式反应产生大量热能。用循环水(或其他物质)带走热量才能避免反应堆因过热烧毁。导出的热量可以使水变成水蒸气,推动气轮机发电。由此可知,核反应堆最基本的组成是裂变原子核+热载体。但是只有这两项是不能工作的。因为,高速中子会大量飞散,这就需要使中子减速增加与原子核碰撞的机会;核反应堆要依人的意愿决定工作状态,这就要有控制设施;铀及裂变产物都有强放射性,会对人造成伤害,因此必须有可靠的防护措施。综上所述,核反应堆的合理结构应该是:核燃料+慢化剂+热载体+控制设施+防护装置。

还需要说明的是,铀矿石不能直接做核燃料。铀矿石要经过精选、碾碎、酸浸、浓缩等程序,制成有一定铀含量、一定几何形状的铀棒才能参与反应堆工作。

反应堆-类型

根据用途,核反应堆可以分为以下几种类型①将中子束用于实验或利用中子束的核反应,包括研究堆、材料实验等。②生产放射性同位素的核反应堆。③生产核 裂变物质的核反应堆,称为生产堆。④提供取暖、海水淡化、化工等用的热量的核反应堆,比如多目的堆。⑤为发电而发生热量的核反应,称为发电堆。⑥用于推进船舶、飞机、火箭等到的核反应堆,称为推进堆。

另外,核反应堆根据燃料类型分为天然气铀堆、浓缩铀堆、钍堆;根据中子能量分为快中子堆和热中子堆;根据冷却剂(载热剂)材料分为水冷堆、气冷堆、有机液冷堆、液态金属冷堆;根据慢化剂(减速剂)分为石墨堆、重水堆、压水堆、沸水堆、有机堆、熔盐堆、铍堆;根据中子通量分为高通量堆和一般能量堆;根据热工状态分为沸腾堆、非沸腾堆、压水堆;根据运行方式分为脉冲堆和稳态堆,等等。核反应堆概念上可有900多种设计,但现实上非常有限。

反应堆-优点及分类

原子能发电比常规发电的主要优点是

1)能量高度集中,燃料费用低廉,综合经济效益好。1公斤铀-235或钚-239提供的能量在理论上相当于2300吨无烟煤。在现阶段的实际应用中,1公斤天然铀可代替20—30吨煤。虽然原子能发电一次性基建投资较大,可是核燃料费用比煤和石油的费用便宜得多。所以,原子能发电的总成本已低于常规发电的总成本。2)因所需燃料数量少而不受运输和储存的限制。例如,一座100万千瓦的常规发电厂,一年需要烧掉300万吨煤,平均每天需要一艘万吨轮来运煤。而使用原子能发电,一年只需要30吨核燃料。

3)污染环境较轻。原子能发电不向外排放CO、 SO2、 NOX 等有害气体和固体微粒,也不排放产生温室效应的二氧化碳。原子能发电站日常放射性废气和废液的排放量很小,周围居民由此受到的辐射剂量小于来自天然本底的1%。大量释放放射性物质的严重事故,则发生的概率极低,全世界10000堆年的运行历史中只发生过一次波及厂外的切尔诺贝利事故,它是运行人员违章操作和反应堆本身设计缺陷(缺乏必要的安全屏障)所造成的。大家可能听说过美国三里岛原子能发电站的事故,这次事故是由于人为失职和设备故障造成。由于反应堆有几道安全屏障,该事故中无一人死亡,80公里以内的200万人口中平均受到的辐射剂量还不及佩带一年夜光表受到的剂量。

可能有人要问,反应堆会不会像原子弹那样爆炸?这是不会的,其原因至少有三条:1)原子弹使用的核燃料中90%以上是易裂变的铀-235,而发电用反应堆使用的核燃料中只有2—4%是易裂变的铀-235;2)反应堆内装有由易吸收中子的材料制成的控制棒,通过调节控制棒的位置来控制核裂变反应的速度;3)冷却剂不断地把反应堆内核裂变反应产生的巨大热量带出,使反应堆内的温度控制在所需范围内。

0000可能有人也要问,为什么一些国家不轻易转让原子能发电技术呢?这是因为反应堆用于发电的同时,在反应堆内还产生一定量的钚-239(除大部分中子轰击铀-235原子核使其发生裂变外,仍有一部分中子被铀-238原子核俘获使后者变成钚-239。在反应堆内生成的钚-239中,约有50%以上再被中子轰击发生裂变,释放出能量,使核燃料增殖;其余不到50%的钚-239留在反应堆内。),经后处理可将钚-239提取出来,用于制造原子弹。重水堆产生的钚-239约为压水堆的两倍。

反应堆-分类

根据用途,反应堆可以分成以下几大类:

生产反应堆

用来生产军用钚。它以天然铀作燃料,石墨或重水作慢化剂,普通水或气体作冷却剂。有的生产反应堆也用来从锂制造用于热核武器的氚。

动力反应堆  

用来推动船只、潜艇和发电,供热等。现有的动力反应堆主要是压水堆和沸水堆──统称为轻水堆。其他还有重水堆、气冷堆和快中子堆等。各种动力反应堆的基本情况见表。其中高温气冷堆和钠冷快中子堆属于先进的堆型。高温气冷堆可提供 750℃以上的高温作为化学工业和冶金工业的热源,当它采用铀233作燃料,钍232作转换材料时,可以做到或接近做到热中子增殖。钠冷快中子堆是已经在工业规模上验证了的增殖反应堆,它用钚作燃料,铀238作增殖材料,生成多于消耗量的钚。它的投入运行将大大提高天然铀的利用率,使得从已探明的铀资源中可获得的能量远高于全部化石燃料的能量。

研究反应堆  

用来进行核反应、射线屏蔽、材料试验、固体物理、辐射化学、生命科学等方面的研究,同时可以生产放射性同位素。这种反应堆主要有:①用低浓缩铀作燃料,轻水作慢化剂的反应堆;②用天然铀或低浓缩铀作燃料,重水作慢化剂的反应堆;③用天然铀或低浓缩铀作燃料,石墨作慢化剂,空气冷却的反应堆;④用高浓缩铀作燃料的高通量中子反应堆等。

聚变反应堆和聚变-裂变混合反应堆

除了上述利用重核裂变获取能量的裂变反应堆外,还有利用轻核聚变获取能量的核能装置──聚变反应堆。可以利用的聚变反应有氘-氘反应(D D─→He n 3.25MeV)和氘-氚反应(D T─→He n 17.6MeV)等。聚变反应产生的快中子在聚变反应器(聚变驱动器)外围包层中与锂 6反应并生成聚变核燃料氚:Li n─→T He。

聚变-裂变混合反应堆是聚变反应堆和裂变反应堆的组合。在这种混合堆中,聚变驱动器外围包层由锂、铀和钍组成。聚变产生的快中子在包层内使铀和钍裂变以倍增能量,同时又和锂、铀、钍发生反应,相应地生成氚、钚239、铀233等聚变核燃料和裂变核燃料。

奥克劳现象  

1972年在非洲加蓬的奥克劳(Oklo)铀矿中发现了自然界曾经发生铀的链式裂变反应的遗迹,即史前时代的天然核反应堆,称为奥克劳现象。人们估计在10亿年以前,天然铀中铀235的丰度在3%左右。在富铀矿和水(慢化剂)存在的条件下,可以造成超临界条件和发生链式裂变反应。通过对铀矿的组成分析,估计在奥克劳铀矿中随着水的蒸发和补入,铀的链式裂变反应断续地进行了大约10年。

反应堆-用途

核裂变时既释放出大量能量、又释放出大量中子。核反应堆有许多用途,但归结起来,一是利用裂变核能,二是利用裂变中子。

核能主要用于发电,但它在其它方面也有广泛的应用。例如核能供热、核动力等。

核能供热是廿世纪八十年代才发展起来的一项新技术,这是一种经济、安全、清洁的热源,因而在世界上受到广泛重视。在能源结构上,用于低温(如供暖等)的热源,占总热耗量的一半左右,这部分热多由直接燃煤取得,因而给环境造成严重污染。在中国能源结构中,近70%的能量是以热能形式消耗的,而其中约60%是120℃以下的低温热能,所以发展核反应堆低温供热,对缓解供应和运输紧张、净化环境、减少污染等方面都有十分重要的意义。核供热是一种前途远大的核能利用方式。核供热不仅可用于居民冬季采暖,也可用于工业供热。特别是高温气冷堆可以提供高温热源,能用于煤的气化、炼铁等耗热巨大的行业。核能既然可以用来供热、也一定可以用来制冷。清华大学在五兆瓦的低温供热堆上已经进行过成功的试验。核供热的另一个潜在的大用途是海水淡化。在各种海水淡化方案中,采用核供热是经济性最好的一种。在中东、北非地区,由于缺乏淡水,海水淡化的需求是很大的。

核能又是一种具有独特优越性的动力。因为它不需要空气助燃,可作为地下、水中和太空缺乏空气环境下的特殊动力;又由于它少耗料、高能量,是一种一次装料后可以长时间供能的特殊动力。例如,它可作为火箭、宇宙飞船、人造卫星、潜艇、航空母舰等的特殊动力。将来核动力可能会用于星际航行。现在人类进行的太空探索,还局限于太阳系,故飞行器所需能量不大,用太阳能电池就可以了。如要到太阳系外其他星系探索,核动力恐怕是唯一的选择。美、俄等国-直在从事核动力卫星的研究开发,旨在把发电能力达上百千瓦的发电设备装在卫星上。由于有了大功率电源,卫星在通讯、军事等方面的威力将大大增强。1997年10月15日美国宇航局发射的“卡西尼”号核动力空间探测飞船,它要飞往土星,历时7年,行程长达35亿公里漫长的旅途。

核动力推进,目前主要用于核潜艇、核航空母舰和核破冰船。由于核能的能量密度大、只需要少量核燃料就能运行很长时间,这在军事上有很大优越性。尤其是核裂变能的产生不需要氧气,故核潜艇可在水下长时间航行。正因为核动力推进有如此大的优越性,故几十年来全世界己制造的用于舰船推进的核反应堆数目已达数百座、超过了核电站中的反应堆数目(当然其功率远小于核电站反应堆)。现在核航空母舰、核驱逐舰、核巡洋舰与核潜艇一起,已形成了一支强大的海上核力量。

核反应堆的第二大用途就是利用链式裂变反应中放出的大量中子。这方面的用途是非常多的,我们这里仅举少量几个例子。我们知道,许多稳定的元素的原子核如果再吸收一个中子就会变成一种放射性同位素。因此反应堆可用来大量生产各种放射性同位素。放射性同位素在工业、农业、医学上的广泛用途现在几乎是尽人皆知的了。还有,现在工业、医学和科研中经常需用一种带有极微小孔洞的薄膜,用来过滤、去除溶液中的极细小的杂质或细菌之类。在反应堆中用中子轰击薄膜材料可以生成极微小的孔洞,达到上述技术要求。利用反应堆中的中子还可以生产优质半导体材料。我们知道在单晶硅中必须掺入少量其他材料,才能变成半导体,例如掺入磷元素。一般是采用扩散方法,在炉子里让磷蒸汽通过硅片表面渗进去。但这样做效果不是太理想,硅中磷的浓度不均匀,表面浓度高里面浓度变低。现在可采用中子掺杂技术。把单晶硅放在反应堆里受中子辐照,硅俘获一个中子后,经衰变后就变成了磷。由于中子不带电、很容易进入硅片的内部,故这种办法生产的硅半导体性质优良。利用反应堆产生的中子可以治疗癌症。因为许多癌组织对于硼元素有较多的吸收,而且硼又有很强的吸收中子能力。硼被癌组织吸收后,经中子照射,硼会变成锂并放出α射线。α射线可以有效杀死癌细胞,治疗效果要比从外部用γ射线照射好得多。反应堆里的中子还可用于中子照相或者说中子成像。中子易于被轻物质散射,故中子照相用于检查轻物质(例如炸药、毒品等)特别有效,如果用χ光或超声成像则检查不出来。

推进动力

将反应堆产生的热量带到蒸汽发生器,由蒸汽发生器产生的饱和蒸汽驱动汽轮机而提供推进动力。大家熟悉的核潜艇、核动力航空母舰和原子能破冰船,都是由原子能提供的推进动力。

由于核潜艇有常规潜艇无可比拟的优点,它已成为现代海军中的主力战舰。核潜艇的主要优点是:1)续航力大。续航力是指装一次燃料能持续航行的距离。对核潜艇来说,水下续航力可达7.5万海里;而常规潜艇的水下续航力只有100—400海里(与航速有关), 因为它在水下是靠蓄电池作能源来推进的,隔一定时间需浮出水面或浮至通气管深度利用柴油发电机组对蓄电池进行充电。2)航速高。核潜艇水下航速可达30节(1节为1海里/时)以上,且经常以最大航速航行;而常规潜艇水下最大航速为15—20节,但由于受到蓄电池的限制一般不以最大航速航行。3)隐蔽性能好。核潜艇在水下停留时间约2500小时,而常规潜艇仅10—20小时。世界上已建造的核潜艇约500艘,配备的反应堆近700座,超过了已建造的用于原子能发电的反应堆的总数。1971年我国建成第一艘核潜艇,并试航成功。1988年我国成功地完成了从水下核潜艇发射弹道导弹的试验。

核动力航空母舰同样具有高航速下续航力大的优点,它能长期保持30节以上的航速而无须担心燃料的消耗。它不但不需要补给燃料的后勤舰队,还比同等级常规 航母多携带一倍的航空燃料和武器。其续航力为100万海里。世界上第一艘核动力航空母舰,是美国于1960年建造的“企业号”航空母舰。此外法国也拥有核动力航空母舰。

世界上第一艘原子能破冰船,是前苏联于1959年建造的。它比常规动力破冰船有突出优点:1)由于无须储备大量燃料,船的载重量不会因燃料消耗而减小,其破冰能力始终保持不变;2)轴功率可达75000马力,能在冰厚为 2.0—2.5米的北极区航行;而常规破冰船的轴功率在25000马力左右,一般只能在冰厚为0.7—0.9米的地方航行;3)续航力不受限制。

供热

利用反应堆产生的能量直接供热,有十分广阔的市场。例如,建设一座20万千瓦的低温供热堆,每年消耗二氧化铀仅1 吨,它可以为500万平方米的建筑供暖。而为同样建筑面积供暖的锅炉,每年需要烧煤30万吨。如果以15年为期进行比较,核供热的成本比煤供热便宜。世界上前苏联,加拿大,瑞典和我国都为寒冷地区建造了低温供热反应堆。

反应堆-发展过程

早在1929年,科克罗夫特就利用质子成功地实现了原子核的变换。但是,用质子引起核反应需要消耗非常多的能量,使质子和目标的原子核碰撞命中的机会也非常之少。

1938年,德国人奥托·哈恩和休特洛斯二人成功地使中子和铀原子发生了碰撞。这项实验有着非常重大的意义,它不仅使铀原子简单地发生了分裂,而且裂变后总的质量减少,同时放出能量。尤其重要的是铀原子裂变时,除裂变碎片之外还射出2至3个中子,这个中子又可以引起下一个铀原子的裂变,从而发生连锁反应。

1939年1月,用中子引起铀原子核裂变的消息传到费米的耳朵里,当时他已逃亡到美国哥伦比亚大学费米不愧是个天才科学家,他一听到这个消息,马上就直观地设想了原子反应堆的可能性,开始为它的实现而努力。费米组织了一支研究队伍,对建立原子反应堆问题进行彻底的研究。费米与助手们一起,经常通宵不眠地进行理论计算,思考反应堆的形状设计,有时还要亲自去解决石墨材料的采购问题。

年12月2日,费米的研究组人员全体集合在美国芝加哥大学足球场的一个巨大石墨型反应堆前面。这时由费米发出信号,紧接着从那座埋没在石墨之间的7吨燃料构成的巨大反应堆里,控制棒缓慢地被拔了出来,随着计数器发出了咔嚓咔嚓的响声,到控制棒上升到一定程度,计数器的声音响成了一片,这说明连锁反应开始了。这是人类第一次释放并控制了原子能的时刻。

1954年前苏联建成世界上第一座原子能发电站利用浓缩铀作燃料,采用石墨水冷堆,电输出功率为5000千瓦。1956年,英国也建成了原子能电站。原子能电站的发展并非一帆风顺,不少人对核电站的放射性污染问题感到忧虑和恐惧,因此出现了反核电运动。其实,在严格的科学管理之下,原子能是安全的能源。原子能发电站周围的放射性水平,同天然本底的放射性水平实际并没有多大差别。

1979年3月,美国三里岛原子能发电站由于操作错误和设备失灵,造成了原子能开发史上空前未有的严重事故。然而,由于反应堆的停堆系统、应急冷却系统和安全壳等安全措施发挥了作用,结果放射性外逸量微乎其微,人和环境没有受到什么影响,充分说明现代科技的发展已能保证原子能的安全利用。

反应堆-固有安全性

在由于某些原因从外部引入反应性,使中子通量增加(核燃料、冷却剂温度上升)的情况下,反应堆本身具有防止核反应失控的工作特性。我们称这种特性为固有的安全性。固有特性来自反应堆本身所具有的负反应性温度效应、空泡效应、多普勒效应、氙和钐的积累和核燃料的燃耗等。

反应堆内各部分温度升高而再生系数K变小的现象称为负反应性温度效应,对反应堆的稳定性和安全性起决定作用。

反应堆冷却剂中,特别是在沸水堆中产生的蒸汽泡,随功率增长而加大,从而造成相当大的负泡系数,使反应性下降,这个效应叫空泡效应,有利于反应堆运行的安全。

多普勒效应是指裂变中产生的快中子在慢化过程中被核燃料吸收的效应。它随燃料本身的温度变化而有很大的变化。特别重要的是这种效应是瞬时的,当燃料温度上升时,它马上就起作用。

在裂变产物中积累起来的氙和钐是对反应堆毒性很大的元素,这两种元素很容易吸收热中子,使堆内的热中子减少,反应性也下降。

一般说来,反应堆长期运行之后,反应性要下降,这是由于燃料的燃耗加深而引起的。

以上这些效应,一般都有利于反应堆运行的安全,但在一定的条件下,也有不利的一面。

在轻水堆情况下,有三个效应是起作用的。第一,由于燃料温度的上升,铀-238吸收中子的份额增加,从而使反应性有很大的下降(负反应性),是多普勒效应起了作用;第二,轻水慢化剂温度升高,其密度变小,中子与慢化剂碰撞的机会减少,中子慢化效果降低,反应性减小,负反应性温度效应起了作用;第三,轻水冷却剂温度升高,就产生气泡,其道理与第二点相同。由于中子泄漏增加,使反应性有很大下降,这就是所谓的空泡效应。

在气冷堆的情况下,由于多普勒效应的作用,燃料给出了负的温度效应。另一方面,因为气冷堆的功率密度低,石墨的热容量大,所以当发生事故时,堆芯温度上升慢,二氧化碳冷却剂的密度低,即使在冷却剂丧失的情况下,对反应性几乎也没有什么影响,功率仍将继续上升,这时,要靠快停堆系统来控制。

投稿
非常不爽,删了吧! 相关词条:其他 原子弹 原子能发电站 核裂变反应 原子能反应堆 轻水堆 燃耗 陶瓷材料 铀238 核燃料循环 气冷堆 二氧化碳 反应堆容器 气轮机 海水 医学 汽轮机 哥伦比亚大学 费米 芝加哥大学