快好知 kuaihz

「剖析战舰」超级战舰俾斯麦,生存能力篇...

【剖析战舰】超级战舰俾斯麦,生存能力篇·中(3)——装甲防护,生存能力篇(中)

上文主要剖析了俾斯麦级的装甲防护能力。但是,战列舰仅仅考装甲防护还是无法做到称霸海疆的,还要有优秀的防雷结构。所以本篇将着重剖析俾斯麦的水下防雷结构和俾斯麦特殊的全面防护设计、穹甲以及双层装甲甲板。

防雷结构

俾斯麦的防雷隔离舱在舯部深5.5米,向舰尾方向逐渐减至5米,向舰首方向逐渐减至4.5米,由22mmSt52船壳—空气舱—18mmSt52油舱壁—油舱—45mmWw主防雷装甲板—8mmSt52防水背板构成,为两舱四层钢板的布置结构。该结构在动力舱段的主防雷装甲后面没有设置完整的过滤舱(注7),而在副炮弹药库和主炮弹药库舱段的主防雷装甲到弹药库壁之间,管线舱和下方的储藏舱一起形成了完整的过滤舱。整体上看,除了弹药库舱段的布置相对还算严密以外,与同时期其它国家战列舰的防雷结构相比较,俾斯麦的结构要简单得多,设计要求也不高,仅仅为抵御250kgTNT的水下爆破。但出人预料的是,它在实战中的表现。

从1940年7月西非达喀尔“黎塞留”号战例,1941年3月马塔潘角“维内托”号战例,1941年12月南中国海“威尔士亲王号”战例来看,这些防雷结构复杂,设计要求为抵御350-454kgTNT水下爆破的战列舰,除了黎塞留以外,没有一艘能抵御150-176kgTNT装药的鱼雷攻击。而1941年5月大西洋上,“俾斯麦”号战列舰被击中了三枚箭鱼式攻击机投下的170kgTNT装药的机载鱼雷,除了阴错阳差的打坏了无法防御的船舵外,其破坏力均被防雷结构完全抵挡,几乎没有造成任何损伤,这说明俾斯麦防雷结构的实际抵抗能力远在上述几个国家的同行之上。再根据其它更严峻的受打击情况,国外专题网站上的技术介绍文章明确表示认为其实际能力远远超过设计要求的防御250kgTNT水下爆破(原文:Overall, the torpedo defence system was designed to resist a TNT charge of 250 kg although its resistance actually proved to be considerably higher than that)。德国海军在1944年11月12日关于提尔皮茨损失的222-45号技术报告上指出它的TDS(Torpedo defence system)能抵挡300kg德国hexanite烈性炸药的水下爆破,可以认为这是该级战舰防雷系统的实际准确防御水平。

产生以上结果的原因,笔者分析可能是因为是St52造船钢的高性能得到了发挥,防雷结构内布置稀疏但厚度不低的St52水密隔板兼顾着优良的鱼雷爆破冲击波抵抗能力。但是,防雷结构终究是为了抵消冲击的设计,并不是硬抗住鱼雷的爆炸,同样也可能是因为对面鱼雷的威力偏低所导致。如果把俾斯麦级扔到太平洋,两三发九三式氧气鱼雷就可能把俾斯麦葬送海底了。

全面防护

俾斯麦的主装甲堡长达171米,覆盖了70%的水线长度,装甲堡侧壁从水线以下3米多处一直延伸到上装甲甲板,在整个舷侧立面的常见被弹部分都布置了厚重的装甲,是二战时代装甲覆盖面积比例最大的战列舰。其上部2.6米高的舷侧装甲带由厚达145mm的KCn/A钢板制成,与50-80mm的Wh上装甲甲板一同保护着整个位于主装甲堡上部舰体内的水兵生活和工作区,可以抵挡重巡洋舰的炮弹和中小型航空炸弹。中部是位于水线上下的320mm厚5.2米高的KCn/A钢板制成的主舷侧装甲带,可以在正常交战距离以材料质量优势独自抵挡大部分战列舰的炮弹。在吃水9.8-10.4米的作战常态重量时,俾斯麦高5.2米的320mm主舷侧装甲有2.6-3.2米被埋在了水下,在320mm主舷侧装甲的下方,还有一道高0.6米均厚为170mm的主舷侧装甲下沿,使该舰拥有深入水下达3.2-3.8米的舷侧装甲,为其提供了良好的水下防弹能力,炮弹必须在水中穿行很长的距离击中更低的位置才能穿过22mm船壳进入防雷吞噬舱和吸收舱,这时后面的45mm主防雷装甲板已经能够独立抵挡。

在舰体主装甲堡内,位于主装甲甲板以下的空间,设置有8道由厚达20-60mm的Wh钢板制成的横向内部装甲墙,它们也被同时作为舰体横向构造的一部分。8道装甲墙和首尾两端320mm厚的横向外装甲墙共同把俾斯麦战舰主装甲堡内的下部空间分为9个重装甲舱段,其中的6道,以30mm的厚度又延伸到上部舰体内,和首尾两端100-220mm厚的横向外装甲墙共同把主装甲堡内的上部空间也分为7个重装甲舱段。即使有战列舰炮弹或穿甲炸弹射入其中爆炸,弹片受到这些内部装甲的阻挡,破坏力也会被控制在较小范围的空间内。

俾斯麦的舰首和舰尾水线部位分别设有60mm和80mmWh钢制成的轻装甲带,它们会在舰体受到攻击的时候尽可能的保持水线外形的整体完整度,防止舰体表面发生大面积破碎。俾斯麦在舰首水下被英国战列舰炮弹炸开一个对穿的窟窿,舯部水下外壳被炸开另一个窟窿,还损失了1/6动力的情况下仍然保持了28节的航速。反观没有舰首水线轻装甲带的武藏号,其舰首水线部位的船壳被一颗航空炸弹撕开破口以后,向外翻卷的钢皮形成了巨大的阻力,使武藏号的航速从27节降为21节。在一战中积累有丰富实战经验的英国、德国以及法国、意大利等欧洲国家在之后设计的新式主力舰上都设有环绕首尾水线的轻装甲带,只有环太平洋地区的美国和日本取消了这个设置(宿命对手的心有灵犀一点通?)。

二战时代的大部分新式战列舰都采用了重点防护的方式布置装甲,这是因为它们的装甲比重小,没有多余的装甲去防护非致命部位,保证重点部位不被击穿,是首要的。但是在重点部位能防御敌舰炮弹的前提下,自然是防护尺度越大越好。全面防护的军舰与重点防护的军舰相比,无论在装甲都能被炮弹击穿还是都不能被炮弹击穿的情况下,都是前者能承受更多得多的打击量。

虽然全面防护更能抗打击量,但是并不能证明全面防护就是比重点防护更加有效的增加战舰的生存能力。有些德吹说:“俾斯麦号战舰在莱茵演习前后共承受了90发左右22kg、23.2kg装药的战列舰炮弹、310发左右其它炮弹和6-8枚鱼雷的打击后,舰体外观依然基本完整。而仅仅承受了5发18.4kg装药的战列舰炮弹打击的让.巴尔号,舰体外观已经面目全非。这也证明了一些人所谓的‘重点防护军舰的nothing区域不会引爆APC’的说法纯属幻想。重点防护是一种不得已而为之的举措,并不是军舰的非重点部位真的无足轻重。军舰的理想防护形态是重点部位防御能力不低于甚至高于重点防护的全面防护。”

被美国马萨诸塞号战列舰炮轰过的让巴尔号,其舰体被打的惨不忍睹

这种言论显然是有荒谬的。首先,俾斯麦是承受了很多炮击并且舰体完整,但也只是舰体完整,俾斯麦级其水线防御,仅仅有180mm钢甲,而且向下延伸不足1.5米,根本抵抗不了超远程射击的炮弹。如果运气差的话,甚至连203mm重巡炮弹都挡不住。而且让巴尔号的情况可能是由于超远距离下的MK6舰炮打出的406mm、1.6吨重型穿甲弹由于重量的BUG下,在飞行中能保持更有效的保持动能,在超远距离下能打出对脸CQC情况下更大的穿甲能力。同时,超重的炮弹能在远距离下打出更弯曲的弹道,在末端时已经几乎处于垂直下降的状态了,这种醍醐灌顶的攻击方式能更有效的打穿战列舰普遍薄弱的水平装甲,在内部造成巨大破坏。如果当时把让巴尔号换成俾斯麦号,可能俾斯麦会被砸的更惨。所以说,全面防护的军舰与重点防护的军舰相比,无论在装甲都能被炮弹击穿还是都不能被炮弹击穿的情况下,只能说前者比后者更能吃炮弹,这些符合德国海军的海盗式破袭战略。毕竟,船跑到一般就让敌人的炮弹洗沉了,那还怎么愉快的当一名海盗呢?

穹甲

二战时代大部分国家的军舰主水平装甲都是布置在主舷侧装甲上方,与主舷侧装甲上方边缘连接,构成一个密闭的装甲盒。德国军舰则不同,它采用了一种叫做装甲堡延展结构的装甲布置方式,其主水平装甲位于主舷侧装甲一半左右位置的腰部,在靠近舷侧的两端以小俯角向下倾斜,延伸到主舷侧装甲的下部位置与之相连,这样的主水平装甲在横截面上看起来是一个穹顶,被称为“穹甲”。

穹甲顶部位于水线附近,在军舰处于作战常态排水量的时候则往往位于水线以下,这就使得敌方炮弹在穿过其主装甲带后还必须再穿过这层装甲,才能进入德舰的机舱、锅炉舱、副炮弹药库和主炮弹药库。虽然穹甲布置缩小了舰体核心舱室的空间高度,但这个问题往往在德舰舰体主装甲区的巨大长度上得到弥补,从而保持了德舰核心舱室的空间总量。以俾斯麦战舰为例,其380mm主炮弹药库,锅炉、轮机、150mm副炮弹药库,105mm、37mm和20mm高炮弹药库,锅炉舱到轮机舱的蒸汽输送管道,贯穿全舰的纵向主电缆通道全部布置在了80-120mm穹甲的下方,容纳的设施比大部分其它国家的新式战列舰还多。

主舷侧装甲与主水平装甲的重叠布置本身就给来袭炮弹设置了巨大的总穿甲路径厚度,撇开“主舷侧装甲—穹甲水平部分”这种一看就无法击穿的穿甲路径,仅以“主舷侧装甲—穹甲倾斜部分—主防雷装甲”这个穿甲路径来评估俾斯麦的舰体侧面防护能力。这个路径为来袭炮弹设置了水平厚度达658-685mm,绝对厚度达475-485mm的装甲。除此以外,炮弹在穿过第一层装甲时还会发生三个额外的负面效应,即弹道转正、弹体破坏和弹轴弹道偏离。即使是命中并击穿主舷侧装甲的炮弹,在击穿以后,弹道受厚装甲的转正效应影响将偏向垂直于主舷侧装甲的方向,以极小的入射角接触110-120mm的Wh准水平装甲(68度倾斜),随即发生跳弹。此外,炮弹弹体在克服主舷侧装甲670-700HB的表面硬度和穿过深达40-50%的递减渗碳层以及后面的匀质层时自身也会被严重破坏,失去常态下有利的穿甲外形。同时,受到不均衡的金属内应力作用,弹体中轴线与弹道会发生偏离,并在随后飞过的距离中进一步加大偏离。这三个额外的不利变化会在装甲厚度本身之外极大的增加炮弹穿透下一层装甲的难度,受到巨大的装甲厚度阻隔、弹道转正效应、弹体破坏作用和弹轴弹道偏离作用的多重影响,二战时代没有什么舰炮炮弹能在哪怕是极近距离击穿俾斯麦的舰体侧面防护。

但是,穹甲的设计也带来两个致命的缺点。一,穹甲是十分吃吨位的。穹甲多了主装就容易被击穿,然后进水祸害稳性。当时战舰的设计要么就穹甲为主,要么就主装为主再来个防破片穹甲(参考日本的天城级,虽然最后没造出来)。二,穹甲把战舰大部分吨位给占了,浪费了本该分配给更大口径的舰炮与更多副炮和防空炮的吨位。这就是为什么俾斯麦在当时可谓是独树一帜大船抗小炮的奇葩案例(满载排水量50000吨的俾斯麦装380mm主炮,而38000吨的南达科他级都装406mm主炮了),也是为什么俾斯麦级是各国最强战列舰中,主炮口径最小,防空最差的原因。

双层装甲甲板

军舰上部舰体的金属板材水平结构,从功能上分为装甲甲板、水密甲板和两用甲板三种。装甲甲板由匀质装甲钢制成,具有很高的防弹性能,但其接缝处在受到强力打击后不一定还具有水密功能,所以在其下方铺设有水密甲板。水密甲板由船舶结构钢制成,具有极佳的韧性和延展性,通常在发生大幅度形变后仍能承担水密作用,即使发生破裂也容易修补,但其材质软,防弹性能低。两用甲板的用材是经硬化处理过的船舶结构钢,能兼顾防弹和水密的双重作用。当然,它的防弹性能不如纯粹的匀质装甲钢,而水密性能不如纯粹的船舶结构钢,但因为受材料特性限制,厚度不足的金属板材无法再细分为装甲甲板和水密甲板,所以对其进行功能整合,成为两用甲板,这在美国和意大利战列舰上被广泛采用。

德国战列舰没有设置两用甲板,它们采用了装甲甲板和水密甲板分离的传统布局。俾斯麦位于机舱和弹药库上方的舰体水平结构有三层,第一层由柚木+50-80mmWh装甲甲板+10mmSt52水密甲板+第一主构造梁构成;第二层由20mmSt52水密甲板+第二主构造梁构成;第三层是该舰上为数不多的创新设计之一,在80-100mmWh水平部分装甲甲板的下方是20mm的St52水密甲板,再往下并没有象其它国家的战列舰一样布置主构造梁而是水平铺设了一层构造加强筋,与装甲甲板一同被作为舰体构造的组成部分,承担和主构造梁相近的作用。此外,构造加强筋由弹性形变范围刚好比Wh钢略大一点的St52钢制成,可以随着Wh装甲板一同发生弹性形变并分担抗拉峰值受力,再随着Wh装甲板一同恢复,以此提高整个水平结构的防御力,加强这道保护动力舱和弹药库的最后防线。

双层甲板

双层舰体上部主构造梁,此图能很好的看出来

与其它国家的军舰不同,俾斯麦战舰拥有两层独立布置的装甲甲板。在动力舱段上方,上层水平装甲厚50mm,下层水平装甲厚80-110mm,其中央部位总厚度为130mm,靠近两舷为160mm;在副炮弹药库舱段上方,上层水平装甲厚50mm,下层水平装甲厚100-120mm,其中央部位总厚度为150mm,靠近两舷为170mm;在主炮弹药库舱段上方,上层水平装甲厚80mm,下层水平装甲厚100-120mm,其中央部位总厚度为180mm,靠近两舷为200mm。此外,俾斯麦战舰拥有3层独立布置的水密甲板,在舰体中央部位总厚度为50mm,靠近两舷为35mm。

双层甲板

本篇着重剖析俾斯麦的水下防雷结构和俾斯麦特殊的全面防护设计、穹甲以及双层装甲甲板。而下一篇,装甲防护,生存能力篇(下)会剖析俾斯麦级的火力、火控和指挥系统防护能力,以及俾斯麦级的生存力和战斗力保护能力总评。

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:俾斯麦  俾斯麦词条  战舰  战舰词条  剖析  剖析词条  生存  生存词条  能力  能力词条